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NOMENCLATURE

side-force coefficient in the aercdynamic axis system (along
v), 2(side force)/pOVZS

normal-force coefficient in the aerodynsmic axis system
{along =z}, 2(normal force)/pOV28

side-~force and normal-force coefficients in the body-axis

system; along T respectively

Zrs

rolling-moment coefficient in the aesrcdynamic axié system
(along xp), Ei/pOVZSR

pitching-moment coefficient in the aercdynamic axis system
(along ¥), 2ﬁ/pOVES£

side-moment coefficient in the aercdynamic axis system
(along =z), Qﬁ/ponsk

rolling-, pitching-, and yawing-moment coefficients in the

body-axis system; along x respectively

B*Yp2 B>

total enthalpy

moment compenents along the Xpa¥»Z aercdynamic axes,
respectively

distance from center of gravity to nose of body (-s,. )

Tip
reference length (body length, ( ))

Srinal Stip

pregsure

components along the Xps¥psly 8XeS, respectively, of the
total angular velceity of the body axes relative fo
inertial space

componants of the total angular veleoeity along the ¥,z

aerodynamic axes, respectively, Eq. (2.6)

reference area (body base area)



e

o>

™w?e

vi

computatiocnal axes, origin at center of gravity, s positive
in the negative Xy direction, T and 8 polar ccordinateg
in planes normal to &, Fig., 1

time

components of flight velocity along x axes, respsc-

B*Yp2%p
tively, Fig., 1

components of local flow velocity in the s,T1,8 directions,
respectively

flight velocity

body-fixed axes, origin at center of gravity, x. coinecident

B
with a longitudinal axis of the body, Fig. 1

aserodynamic axes, origin at center of gravity, XpsZ in the
plane of the resultant angle of attack, y in the cross-
flow plane normal to the resultant angle-of-attack plane,
Fig., 1

angle of attack and sideslip in body axes, respectively,
Eq. {(2.7)

angle-of-attack parameter in body-axis system, WB/V

angle-of-sideslip parameter in body-axis system, vB/V

dimensionless axial component of flight velocity (along XB),
Fig. 1 and Eq. (2.2)

ratio of specific heats

magnitude of the dimensionless crossflow flight velocity in
the aerodynamic axis system, Fig. 1 and Eq. (2.2)

transformed circumferential independent coordinate, Eq. (3.6)

transformed radisl independent coordinate, Eq. (3.6)

local flow mass density

atmospheric mass density



Wy ,W3z,W3

resultant angle of attack defined by i axis and flight
velocity vector, Fig. 1
centrifugal potential, Eg. (3.3)

coning rate of =x_ axis about the flight velocity vector,

B
Fig. 1 (for body in coning motion, total angular wvelocity
of body-fixed axes with respect to inertial space)

angular inclination of the Zg axis from the =z &axis in the
erossflow plane, Fig, 1

components of total angular veleeity in the s,7,9 directions,

respectively

vii



A STUDY OF THE NONLINEAR AERODYNAMICS OF BODIES
IN NONPLANAR MOTION*
Lewis Barry Schiff

Ames Resesarch Center
SUMMARY

Concepts from the theory of functionals are used to develop nonlinear
formulations of the aercdynamic force and moment systems acting on bodies
in large-—amplitude, arbitrary motions. The snalysis, which proceeds for-
mally once the functional dependence of the aerodynamic reactions upon the
notion variables is established, ensures the inclusion, within the result-
ing formulation, of pertinent aerodynamic terms that normally are excluded
in the classical trestment. Applied to the large-smplitude, slowly varying,
nonplanar metion of a bedy, the formulation suggests that the serodynamic
moment can be compounded of the moments acting on the body in four basic
motions: steady angle of attack, pitch oscillations, either roll or yaw
oscillations, and coning motion, Coning, where the nose of the body
degscribes a circle around the velocity vector, characterizes the nornplanar
nature of the general motion.

With the above motivation, a numerical finite-difference technigue is
developed for computing the inviscid flow field surrounding a hody in con-
ing motion in a supersonic stream. Computations carried out for circular
cones in coning motion both at low supersonic and hypersonic Mach numbers
confirm the adeguacy of a linear moment formulation at low angles of attack.
At larger angles of attack, however, the forces and moments become non-

linear functions of the angle of attack. Computaticnal results for the

*Pregsented as Ph.D. Thesis to Stanford University, Sfanford, California.



reactions on the circulzr cone at the higher angles of attack agree well
with experimental measurements within the range of variables investigated,
This indicates that the initial nonlinear behavior of the serodynamic

forces and mements is geverned primarily by the inviseid flow.
1. INTRODUCTION

Linear formulations of the aerodynamic force and moment systems do not
properly describe the aerodynamic reactions on flight vehicles in nonplanar
rotions at large resultant angles of attack., As a result, equations of
vehicle motion incorporating linear aerodynamic formulations have often
failed to correctly prediet the variety of motion such flight vehicles can
experience. In the past this has been a problem primarily associated with
the flight of slender bodies of revolution. However, the reguirements for
increased angle-of-attack ranges for proposed high performance aircraft and
space shuttle vehicles, as well as those envisioned for STOL aircraft, have
tended to make the deficiencies of the linear formulation a nroblem of more
widespread concern in the anslysis of vehicle motions.

In the linear formulation, a reference flight condition is chosen,
for example, the steady level flight of an airplane, and the deviations of
the angular orientation and sngular velocities of the body are measured
from the reference state. The aerodynamic reacticns are expressed in a
Taylor series expansion in fterms of the devistions and only terms linear
in the disturbance gquantities are retained. The coefficients of the expan-
sion are called the aerodynamic derivatives and are evaluated at the refer-
ence state, When applied to a combined pitching and yvawing motion, the
linear formulation can be shown to be equivalent to the vector de;omposition

of the nonplanar motion into two orthogonal planar motions, to the supseguent
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treatment of each planar motion as if the other were absent, and to the
guperposition of the results. This approach has had a great deal of suc-
cess, particularly for the case of airplane motions where the deviations
from the reference state are small, A rather complete treatment of the
linear formulation has been presented by Etkin.l! At large resultant angles
of atiack, however, it is physically clear that the reactions due to
motion in one plane will be influenced by the présence of the other motion,
and thus a more precise formulation will be necessary to account for this
coupling,

The form that extensions of the linear feormulation should take to
account for the large angular devistions from the reference state has not
yet been settled. Gulided by the fact that the static forces scting on a
body of revelution lie in the plane of the resultant angle of attack,
Nicolaides et al.2 and Ingram,> concerned with missile aerodynamics,
agsumed that the fé%m of the nonlihear generalization for a body of réVOa
lution was the same as that of the linear formulstion, but that the aero-
dynamic derivatives were nonlinear functions of the magnitude of the
resultant angle of attack. If this formulation is applied to Tthe combined
pitching and yawing motions of a nonspinning axisymmetric body, it predicts
that the zerodynamic damping in the plane of the resultant angle of attack
is equal to that acting perpendicularly to the angle-of-attack plsne. It
can be shown by a comparison of the experimental results of Iyengar® with
those of Schiff and Tobak® that this is untrue for such bodies at large
angles of attack, Murphys propesed an extension of the linear formulation
which allowed for the possibility of unegual aerodyﬁamic dampings in and
normal to the angle-of-attack plane, Unlike the previous one, Murphy's

formulation is therefore capable of correctly distinguishing beiween the



out-of-plane damping and the out-of-plane classical Magnus forces in the
case of the nonplanar moticon of a spinning hody of revolution.

Another approach has been developed by Tohak et al.,’ !0 who used con-
cepts from nonlinear functional analysis to develop & formulation of the
sercdynamic force and moment system for an arbitrarily shaped body that
does not depend on a linearity assumption. This formulation has been shown
to be equivalent to that of Murphy for the special csse of a body of revo-

9 and reduces to the form of the linear formulation for small resul-

lution,
tant angles of attack. The formulation suggests that the aerodvnamic reac-
ticns on a body in an arbitrary nonplanar motion can be compounded of the
forces and moments acting on the body in four characteristic motions, three
of which are well known. The fourth, coning moticn, in whiech the nose of
the body describes a circle around the velocity vector, is seen to have
particular significance since the nonlinear behavior, with increasing angle
of attack, of the contribution to the total force snd moment due to coning
motion cannot be evaluated from the contributions due to any planar motions.
Experimental evaluations®*® of the contribution due to the coning of a body
of revolution have confirmed this and have shown this contribution to be =
potential cause of circular limit motions at lsrge resultant angles of
attack., In addition, it is anticipated that the contribution due to con-
ing motion will be important in correctly describing the pre- and post-
stall behavior of aircraft-like bodies at large angles of attack.

The objectives of the present work are twofold. The first is io
review and unify the development of the nonlinear formulation proposed by
Tobak et al. and to remove from this analysis an unnecessary assumption of
constant flight speed. The second, and more important, objective is to

present a numerical method for computing the flow field surrounding a body
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®
in coning motion in a supersonic stream., A finite-difference scheme of
MacCormack,ll developed as a shock-capturing technique for computing com-
plex, steady, three-dimensional, inviscid flow fields by Kutler and
Lomax,12 is extendéd to the case of coning motion. The capabilities and
limitations of the method are described. Results of computations for
slender conical bodies in coning motion at various supersonic Mach numhers
are presented and are compared with experimental results and with the
results of other analytical and numerical methods, where applicable. The
results will be seen to exhibit significant nonlinsar behavior with
inereasing resultant angle of attack, and the significance of the non-

linearities will be discussed,

The auvthor wishes to acknowledge and thank Professor Samuel McIntesh,
Jr., and Professor Holt Ashley for Their advice and encouragement during
the course of this work. Grateful scknowledgment is also given to Murray
Tobak of the NASA Ames Research Center Ffor his wvaluable advice and helpful
consultation, and to Busan Schiff for her encouragement and for her help
in preparing the manuscript.

Finally, acknowledgment is given to the National Aeronautics and
Space Administration for support of the research and of the asuthor's
graduate study through the Honors Cooperative Program with Stanford

University.



2, HNCNLINEAR FORMULATTON - REVIEW AND EXTENSION

In a series of 135,]_1361'5,7"10 concepts from the thecry of functicnals
wers used to develcp a nonlinear formulation of the serodynamic force and
moment system acting on a body performing motions of interest, the first
being the planar motion of an airplane at large angle of sttack.’ The
analysis was extended to the large-amplitude, nonplanar angular motions cof
a body of revolution whose mass center traversed a straight-line path,s
and showed that the total moment could be compounded of the contributions
from four simple motions, TFurther extensions of the analysis to the free

9 and of an arbitrarily shaped bodylo showed

flight of a body of revolution
that even in these more general cases the total moment still could be
determined from the contributions from the same Tour simple motions. The
resulting formulation alleows the angular deviations of the body to bhe
large, but is valid only for the low angular rates typical of aircraft
motions. Unfortunately, a uniform notation was not employed throughout

the series, while the assumptions of the analysis, covered in detail for
the planar case, were abbreviated in the later works. Additionally, it

was unnecessarily assumed that the flight speed remained constant over the
course of the motion considered, In this chapter the development of the
nonlinear moment system is reviewed for the large-amplitude planar motion
of an arbitrary body whose flight speed varies, and it is indicated how
the formulation can be extended to more accurately represent motions of
higher frequencies. The formulation is then developed for the most general
cagse, that of an arbitrarily shaped body in free flight, agein removing the

restriction of constant flight speed. Finally, the resulting formulaticn

i1s specialized to the previously reported cases.
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2.1 Coordinate Systems

Three axis systems having a common origin at the bedy's mass center,
and a common axis Xg aligned with a longitudinal axis of the Tody, will
be used to describe the motion in all cases considered. Some latitude
existz in the choice of the longitudinal axis, and this freedom can be
used to simplify the description of a particular motion. TFor example,
when describing the motions of an sirplane-~like hody, the Xp axis is
usually chosen tc be initially coincident with the diréction of steady
flight. Alternatively, when describing the flight of & body of revolution,
the Xn exis is most often, bubt not necessarily, choseh as the axis of
axial symmetry.

Axes Xg> ¥p» Zp are fixed to the moving body (Fig. 1). The compo-
nents of the flight veloecity vector of magnitude V, resolved along the

Xns ¥ps Zp body-fixed axes, are Ups Vg Wpo respectively. Thus

v = u% + i+ w% (2.1}

The resultant angle of attack v is defined by the flight velccity wvector

T

and the x_ axis. The plane formed by the

. axes is the crossflow

Yge ZB
plane, illustrated in Fig. 1{a). The projection of a unit vector in the
flight velocity direction onto the crossflow plane is a vector with magni-

tude 6§, and will be called the dimensicnless crossflew velocity vector.

Reference to Fig. 1(b) gives

2 2
& = i@. + E = + (2 ) )
= v 7 = 81n g | . 28




o

y = Lz cosa (2.2v)
v
4§

e == tan o {2.2c)

The components of the angular velocity vector of the body relative to

inertial spece, resolved along the 2. body axes, are Pps dps

*p> Tm» "B
ros respectively.

A second axis system, xg, ¥, z, is chosen %o be nonrolling with
respect to inertial space. Opecifically, the component of the angular
veloecity wvector cf the Xps v, 2 axes measured with respect to inertial
gpace, resolved along the Xp axis, is zero, while the components
resolved along the ¥y, z axes are q, r, respectively. The nonrolling
axis system has been used extensively in the field of missile aercdynamics,
since its use, together with the assumption of small angular deviaticns,
leads to closed-form solutions of the equation of wvehicle motion. The

angle $ through which the body axes have rolled at any time t can be

defined relative to the nonrolling axis system as
- t
= 2.
¢ f@ Py de (2.3)

The angular inclination A of the crossflow velocity vector § is mea-
sured relative to the nonrolling axis system, while ¢ 1is the angular
inclination of the body axes from the crossflow velocity vector, With

the aid of Fig. 1(a), the body roll rate is seen to be the sum



pB = ,i + 1:[) (2-)4)

The components of the angular velocity of the body relative to inertial
space resolved in the nonrolling axis system, pg, g, T, are related to
those resolved in the body axis system, Pp» Ops Tps through

i B) : (2.5)

FPinally, axes Xgs ¥s 2 will be called the serodynamic axes. Axis
z lies in the crossflow plane and is coincident with the crossfiow veloc-
ity vector; axis y 1lies in the crossflow plane normal to the direction
of &. The components of the angular velocity of the body resolved in

the aerodynamic axis system, Pgs 4, T, are related to those resolved in

the body axes throush

. iy .
q+ir=e (qB + er) (2.6)
In accordance with Ref. 10, WB/V will be called the angle-of-attack
parsmeter &, and VB/V will be called the angle-of-sideslip parameter

%. They are related to the standard HASA definitions of angle of attack

¢ and angle of sideslip £ through

ten o = == & (2.7a)
B
. -
sin B = = B (2.7p)



and to & and ¥ through
4+ ib = set? (2.8)

The compcnents of the aercdynamlie force coefficient regolved along

A A

B Yp» %p body axes are @X, CY’ CZ, respectively, while the cor-

the X
responding components of the aercdynsmic moment coefficient (acting sboit
the mass center) are 62, am, én, respectively. Analogously., the compo-
nents of the force and moment ccefficients resclved along the aerodynamic

BXES  Xp, ¥, 2 &8re Co and CE’ C

CX’ Cy, 7 m? Cn’ respectively. The compo-

nents of the aerodynamic moment ccefficient resolved in the aerodynamic

axis system are related to those resclved in the body-fixed axes through

C = 6 (2-9&')

c +ic, = e (& +18) (2.9v)
The corresponding relations between the components of the aerodynamic

force coefficient are obtained by replacing R, m, n by X, Y, Z,
respectively, in Eq. (2.9).

To completely describe the state of a six-degree-of-freedom free-
flight motion, it is necessary to specify the velocity and angular velocity
vectors of the bedy. These may be expressed in terms of their scalar com-
ponents resoclved in the body-fixed axes Ugs Vps Wps Pps Qps T OF
equivalently by 4, é, v, Pgs Gps Tp- Analogously, in the aerodynamic
axis system, the motion is specified by the scalar variables &, ¥, ¥, P
Qy, ry Or by &, ¢, V, i, q, I since Py iz related to i and @ through

1G



Eq. {2.4)., In those motions where the mass center traverses a straight-
line path (i.e., with no lateral plunging), it is easy to show that, in

the aerodynamic axes,

q =0 = % 3 (2.10a)
r= 8% (2.10b)
A= vd {2.10¢)

where & is the coning rate of the resultant angle-cf-attack plane around
the veloecity vector. When the plunging of the mass center is eliminated,
two of the motion variables can be expressed in terms of the remaining
four. In the aerodynamic axes, a nonplunging motion can thus be described
by the variables 6, ¢y, V, é since knowledge of ¢ and y dimplies knowl-
edge of 5 and @. The relations between variables in the body-fixed axes

for the case of zero plunging, corresponding to Eq. (2.10), are

2 = T (o + fpp) (2.11e)
r=~}-(é—&~j (2.11b)
B Y Py '

pp = ¥b + U (2.11c)

Thus it can be shown that, in the body-fixed axes, a nonplunging motion
can be desecribed by the variables &, é, v, $.

When, in addition to eliminating the plunging of the mass center, the
angle of attack o, the barnk angie ¢, the coning rate, and the flight
speed are all held fixed, the nose of the vehicle describes a circle
around the velocity vector. This motion (o = const, ¢ = const, Vv = const,

$ = const) will be called steady coning motion, In the case of coning

motion, one sees, with the aid of Eq. (2,11), that

11



pp = Y9 (2.122)
ag = 8¢ (2.12p)

r_ = b {2.12¢)

2.2 Develcopment for Planar Motion

To illustrate the ideas behind the development of a nonlinear gero-
dynamic force and moment formulation, we consider, for simplicity, the
large-amplitude planar oscillations of an aircraft as shown in Fig. 2.
Assume that prior to time zero the aircraft is in steady level flight.
At time zero it begins a longitudinal planar motion such that u, and Vg
the components of the flight velocity vector resolved along the Xps Zp
body-fixed axes, respecilively, and the angular velocity of the aireraft,
, a1l vary, while the wings remain level. Thus Vg
the flight velocity resolved aslong the ¥p axis, and the angular wvelocity

g the component of
components Py and T all remain zero throughout the maneuver., The alti-
tude excursions of the aircraft are assumed to be small enough for the
atmospheric temperature and density to be considered congtant. Further,
the variation in the total flight speed is assumed to be small enough for
the effect of Reynolds number variation on the aerodynamic reactions to
be negligible, Under these conditions the aercdynamic force and moment
acting on the body at time t after the start of the motion are dependent
solely on the velccity components g end Wgs On the angular velccity dge
and on all walues faken by these variables over the time interval from
zero to t.
2.2.1 Conecept of a Functiconal

The fact that the aerodynamic reactions on the body at time t are
dependent not only on the instantaneous values of the motion variables,

12



but also on the past history of the motion, caﬁ be expressed mathematically
by introducing the concept of a functional,!? Focussing specifically on
the pitching-moment coefficient (the development for the other force and
moment components is analogous), one designates the coefficient am(t) as
a functional of Ups Wgs Qps OF slternately as a functional of &, V, dg

by the use of the square bracket notation introduced by Volterra:

A

€, (£) = Blug (&) wy(£),q,(e)] = B alg),v{E),q5(E)] (2.13)

m

where & dis a variable in time running from zero to t. The alternate
deaignation 1s possible since in the cagse of planar motion, where %, Pys

rp are all zero, & and V are related to uy and w

B through Egs. {2.1)

and {2.7).

In brief, just as an ordinary function f(x) assigns a number to each
x for which it is defined,'a functional G[y(&)] assigns a number to each
function y(£) of the set of functions (all of which are defined in some
interval & £ £ 2 b) for which the functional is defined. Thus Eq. (2.13)
mey be interpreted as follows: Given any triad of functions a(g), v(z),
qB(E) out of the collection of all such triads defined in the interval
0 <&t 2 t, the functional E' assigns a number to @m(t).
2.2.2 HNcnlinear Indicial Response

Following Ref. T, cne defines the nonlinear indicial pitching-moment
regponse as illustrated in Fig. 3. As shown for the case of s step change
in V/VR (where VR is a constant reference speed), two motions are con-
gidered. The first beging at time zero, and at time 1 +the motion is
constrained so that the motion variables al(g), V(g), and qB(g) are held
constant thereafter. The second moticon differs only in the step imposed

at time <. The difference between the pitching-moment coefficients

13



measured at time t for each of the two motions is divided by the megni-~
tude of the step. The limit of the ratioc, as the step size approaches
zero, is defined as the indicial pitching-moment response at the time ¢t
rer unit step in V/VR at time t. The indicial responses to step changes

in & and qp are defined analogously. In functional notation these are

aém(t)

11 T = G [6(8), V() ,a.(g)st,1] (2.1k4a)
A(V/;:)*O alv/vg "y E :

ACm(t) o
l}m ——‘A“'«&‘_‘ CmA[a(E),V(E),QB
Ao+0 o

(£)st,7] (2.14n)

ac_(t) .
MR = g [BELVE)a (et (22ke)

A(qu/vR B
As indicated by the notation, the indicial response is dependent not only
on the levels a(t), V(t), and qB(T} at which the steps occur, but may
depend on all values taken by them over the time interval zero to 1.
Thus, in general, the indicial responses may themselves be functionsls.
Breaking the time histories of the motiom varisbles &, ¥V, and dyp,
into a geries of step changes and summing the incremental responses to

each of the steps over the interval from zero to t gives an exact inte-

~

gral form for Cm(t):
. N L d .
¢ (t) - ¢ (o) +|‘ cm&[u(g),v(a),qB(g);t,T] 5= (&)dr

t
+J' Cog[8(2) (80 s, (8D 58,07 52 (v/vy)ax

+

‘_\.

o <t
>

Cag [8(0),918) 505 (0)38,7] 2 (aga/vy dar

{2.15)
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2.2.3 Approximate Formulation for Slowly Varying Motions

While exact in principle, Egq. (2.15) cannot generally be evaluated
gince the functionals appearing within the integrals may depend on the
entire past history of the motion. It is desired to develop an approxi-
mate, more easily evaluated form of the expression in which the functionals
are replaced by ordinary functions. To do so, it is firet seen from phys-
ical considerations that the indicial response to a step at time <t is
rot equally affected by all past events, bubt is most strongly influenced
by events of the most recent past. This is most easily illustrated for
supersconic flight, where the flow field around the aircraft at the time
T, and thus the subsequent indicial response, can only be influenced by

events that have occurred during the time interval t-t, = £ = 1. The

a
characteristic time t, is approximately the maximum time required for a
fluid element to travel from the bow shock wavé to the tail shock. The
indicial respense to a step at time 1 dis unaffected by events that have
occurred prior to t-tg. In subsonic flight the vorticity shed by the
aircraft will influence the lecal flow field for all later times, but the
magnitude of the influence decreases as the vorticity is convected far
downstream. In this case ty 1s the time required for the shed vorticity
to have negligible further effect on the flow field. Additional discussion
concerning the/diminishing dependence on the past can be found in Réf. T.
The pericds of oscillatory aircraft motions are typically large com-
pared to the characteristic time +t,. For these slowly varying motions,
the simplest way of accounting for the dependence of the indicial response
on the past is to assume that the respense is dependent only on the levels
a(t), v(t), and qB(T) at which the steps occur. As shown in Fig. 4 for a

step in & at t, this assumes that the response for motion B 1in which
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5, V, and qy are held fixed over the time interval -t < £ < 1 which
can influence the response is a good approximation of the response to the
response for the arbitrary motion A. Under this assumption the response
is no longer a functional, but is a function of the parameters &(rt),
v(t), and qB(T) and of the variables *t and 1. In addition, with the
motion held fixed pricr to the step, the response is 1lndependent of the
time at which the step is mede and is seen to be a function only of -1
rather than of 1t and 1t sgeparately. This is expressed in functicnal
notation as

bu [8(8),7(8) sag(8)st,7] = By [(2),V(c) qg(c) st 0]
o o

-~

= Up (&{T),V(T),QB(T);t-T) (2.16)

~

o

Under this assumption, the desired approximate form of Eg, (2.15) is

~t
C ) = C (0) +§ G (a(x), V(1)

(1) st=t) (&)ar

2
BqB d—T
L a

+ émv(&(T),V(T),qB(T);t—T) = (V/VR)dT
o

e

+J . Cqu(&(T),V(T),qB(r);t—r) E% (age/Vg)dr

(2.17)
When the deficiency functions (which vanish for t-1 > ta] are introducsd

and defined as

F(&(T),V(T),qB(T);t~T)

1

amﬁ(&(T)sV(T)’qB(T) ;m)-—-ém’\(&("() !V(T) qu(T} ;t'T)

(2,18a)

n

G(a(T),V(T),qB(T);t—T) 6mv(&(T},V(T),QB(T)SW)—émY(a(T)3V(T)qu(T)it‘T)
(2,18p)

H(alx) ,V(T),qB(T);ﬁ-T)

]

Cqu(a(T},V(T),qB{T);m)—aqu(a{T),V(T),QB(T);taT)
(2,18¢)
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where @ (&(T),V(T),QB(T);M) is the steady-state value of the indicial
o
response, Eq. (2.17) can be expressed in the alternate form:

t

8 (=38(2),7(t) ,q5(5)) _.f P(a(1),v () sap(n) stmt) 52 (d)as
o

(g}
-
t
et

il

t d
-j G(&(T),V(T),QB(T);t—T) 3 (V/VR)dr

E]
Q
£ a

-5 H(&(T),v(r),qB(T);t--c) i (qu/vR)dT (2.19)
()

since the terms involving the steady-state wvalues form a perfect differen-
tial. The term 6m(W;&(t),V(t),qB(t)) is the steady pitching-moment ccef-
ficient that would be measured in a steady pullup maneuver in which &, V,
and q, are held fixed at alt), v(t), anda qB(t), respectively. Equa-—
tion (2.19) can be further simplified consistent with the asssumption of
slowly varying motions used to approximate the functional indiecial
responses. The functions are expanded in a Taylor series about the point
ad=a(t), v= V(ﬁ), 1y = 0, ana only first-order frequency terms are

retained, The resulting nonlinear formulation is

. aplthe |
0, (8) = € (=38(8),v(£),0) + —— &y (=3a{t),V(1),0)
R )
P22 e G, u0e),0) Tt Bur (6(),V(),0)  (2.20)
R ) Vé
where
. Voot
, = - 2 R0, 0500
o Q
- VR t A
Cugy = - ‘7,;'[ c{af{t),v(t),0;7)ar
O
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Each term in Eq. (2.20) is again identified with a particular motion fronm
which it may be evaluated. The first term is the stalic pitching coef-
ficient measured with & and V held fixed at their instantaneous values,
with 4 held fixed at zero. With the reference velocity VR chosen to
bpe equal to the instantaneous value of the flight velocity V(t), the
second term is seen to be the rate of change with s evalusted &t
Uy = 0, of the pitching-moment coefficient that would be measured in a
steady wvertical pullup with Up = const, p and V held fixed. The third
term is the damping coeffiecient that would be meagured for small oscilla-
tions in & about the instantaneous value @g{t) = const, with V held
fixed at V(t), ap = 0, a plunging oscillation normal to the wvelocity
direction. The last term is the demping coefficient measured for small
oscillations in V about the fixed flight speed V(t), with § held
fized at al(t), 4 = 0, i.e., the damping due to lunging oscillations of
the mass center alcong the flight velocity direction. Thus the gpecifica~
tion of the moment acting on the aircrafi{ performing an arbitrary planar
motion regquires knowledge of the moment acting on the body in four
characteristic motions,

The number of characteristic metions required can ve reduced in
those cases where the lateral plunging of the mass center is small. To

demonstrate this we rewrite Bg. (2.20) as

8,06 = 8 (=3305),v(0),00+ L 8IS, (si(0),v(6),004 B, (4(8),7(2) ,0)

R B &
MO L (rag(6)-ale))e )
+ = Cog{a{t),v(t),0)+ = T cqu(m;a(t),v(t),o)

R

(2.21)
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The terms in Eq. (2.21) are identified by comparing them with those
obtained for the case of nonplunging motion at constant flight speed.
Under these conditions, V = O, oy = (l/y)é, and the last two terms of
Eg. (2.21) vanish. With the plunging of the mass center eliminated,
changes in a correspond to angular motion of the bhody about the fixed
yg &xis. Thus the term (&qu + y@m:) is seen to be the planar pitch
damping coefficient that would be megsured in a single-degree-of-freedom
experiment in which the body performs small angular osc¢illations about a
mean angle of attack, i.e., small oscillations in a sbout & = const,
with ¥ held fixed and qp = (ljy)é. In a general moticn, the contribu-
tions from the last two terms of Eq. (2.21) are not zero. However, for
motions in which the plunging is small, and where the flight speed makes
only small oscillations about a mean speed, the contributions from these
terms can be Jjustifiably neglected since, in equations of vehicle motion,
they would appear only as products of (relatively small) damping terms.
Ir such cases the tobal moment acting on the aircraft is due to the con-
tributions from only two characteristic motiong: steady angle of agttack
and damping-in-pitch. Here V(t) need not appear explicitly within the
notation, it being understood that the characteristic moticons will be
evaluated at a fixed speed equal to the mean value of the flight speed.
2.2.4 Extensions to Describe More General Motions

Te obtain the approximate integral aerodynamic formulstion, Eq.
(2,17), from the exact functional form, Eg. (2.15}, the aircraft motions
were assumed to be slowly varying., The ncnlinear indicial response for
these arbitrary large-amplitude motions was assumed to be the same as the
response to a motion with fixed past. For flutter motions involving

small-amplitude, high-frequency oscillations of the motion variables about
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fixed mean values, the assumption of a constant past history is also
justified. Here the maximum excursions of the motion variables are small
and the motion can be considered to be gensrated by & series of steps
gpplied not at the instantaneous values but rather at the meen wvalues of
the motion variables., The approximate integral form is thus valid for
flutter motions, but cannct be simplified as was done in the case of slowly
varying motions.

When considering large-—-amplitude motions of higher frequencies, the
simple assumption that the general nonlinear indicial response 1s the same
as the response for fixed past may no longer be adeguste. A more precise
way to account for the dependence of the indicial response on past events,
for the planar motion discussed sbove, is Lo assume that the response to a
step at time T 1is dependent not only on the levels af(t), V(1), and

a-(1), but also on their rates of change at the time of the step, &(r)
3 p )

. -~

v(t), and @B(T). Thig is illustrated in Fig. L4 for a step in a. In
motion C, &, V, and i vary linearly in time with rates é(T), ?{T), and
qB(r) over the time interval 1-t_ < £ < 1 during which events may influ-
ence the subsequent response. The response to motion € i1s assumed to

be a closer representation of the response 4o the arbitrary motion A

than is the previously discussed response to motion B, whose past history
is neld rixed. The approximate response Is again a function rather than a
functional and is dependent on the parameters a(t), é(T), Vi), Vi),
qB(T), and qB(T). Since the motion is uniquely specified by these param-
eters over the interval of influence prior to the step, the response is
again dependent on the time variable t-1 rather than on t and 1

separately. In functional ncotetion this is indicated as
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6mA[&(£),v(a),qB(E);t,T]
a L]
< Gy T80 () (£=0) T () (E) yay (e (6) (£=1) 5, 7]

Gy, (3(0),&(1),¥ (1), (1) yag(t)ag (t) so=t) (2.22)
o

1

In addition to more sccurately describing large-am@litude, high-frequency
motions, the expanded approximate indicial response can describe motions
involving hysteresis effects, where, for example, the response to a step
imposed at a given level of the motion variables may be different, depend-
ing on whether the variable was increasing or decreasing prior to the
application of the step. The expanded approximate integral form corre-

sponding to Eq. (2.17) is

t .
8 (4) = ¢_(0) +.[Oama(a(T),a(r>,v(r>,v(r>,qB<T),qB(T);t-T) 2 @

t
+j- émv(&(rl,&(f),\i(r),\}(“f),qB(T),QB(T);’G—T) E% (V/VR)dT
o :

t .
+J'oaqu(a(T),a(T),v(T),v(T),qB(T),qB{T);t-T) 2 (age/r)ar

(2.23)
which is seen to be identical to the simplified form if the indiecial

response functions are found to be independent of the rates a, ﬁ, and QB'

2.3 Development for General Body in Free Flight
One advantage of using the theory of functionals to develop nonlinear
aerodynamic formulations is the ease with which the snalysis may be
extended to incliude additional independent varisbles., Once the functicnal
dependence of the force and mement on the variagbles is established, the
succeeding analysis corresponds formally to that presented for the case of

planar motion., We now use this formalism tc develop = nonlinear formulation
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for a general body in free flight. Under the same restrictions on the
altitude and flight speed variations as were imposed on the planar case,
the force and moment acting on the body are dependent solely on the veloc-
ity and angular velocity history of the moticn. The reactions and the
motion variables can be expressed in terms of their components resolwved
in the body-fixed axes or, equivalently, by their components resclved in
the aercdynamic axis system. The resulting nonlinear formulations are
equivalent, but lead to different sets of charscteristic motions from
which the total reactions are determined. However, as will be seen, the
impertance of coning motion is evidenced by the fact that it appears as
one of the characteristic motions of the formulations developed in both
axis systems.
2.3.1 Body~Fixed Axes

The components of the flight velocity wvector rescglved in the body-
fixed axes, Ugs VB, Wps 8re related to a, é, V  through Egs. (2.1) and
(2.7). Thus the expanded dependence of the pitching-moment coefficient

can be specified as a functicnal of the form

¢ (t) = Blal(e),Be),v(e),pyle),a5(8),r5(8)] (2.2h)

The formulation of the nonlinear indicial responses and of the exact and

approximate integrsl forms for am(t) parallels that of the planar case,
Fgs. (2.14), {(2.15), and {2.17), respectively. When the integral form is

expanded sbout the point & = a(t), B = R{t), v = v(t), Py = Ay = Ty = 0,

B B
and only terms linesr in the rates are retained, the resulting nonlinear

formulation corresponding to Eq. (2.20) is
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[

(t)e _
(w38(t),RB (%), V(%))

m(t) = 6m(m;m
ag(t)e . relt)e o) A0) 1
+ T Cqu(m;a(t),B(t),V(t)) + 7 cmrB o3a{t),8(t),v(t))
LB (aee),800),w(0)) + BER G aee), 800 ,v(e))
R o R B
f HBL & (a0e),B(60, () (2.25)
Vg
have been

brevity, the zeros corresponding to Pg» Aps Tp

where, for

omitted,
Just as was done in the planar case, the formulation can be further

simplified for motions where the plunging of the mass center is small and

where the flight speed makes only small oscillstions about a mean speed.

As before, we rewrite Hg. (2.25) and, guided by Eg. (2.11), neglect terms
mittiplied by qu—(é+§pB), yrB+(B—apB), and V (their contributions vanish
identically in the case of zero plunging and constant flight speed). The
is taken as the mean flight veloecity V(t) and is

The

reference velocity VR
omitted from the functional notation of Eq. {2.25) for conciseness.

simplified nonlinear formulstion is
- ~ A‘Q ~ ~ oA - a~ oA
Cm(t} = Cm( 3 E{v (Cmq (m;a,g) + chl(ﬂ,ﬁ))

B o

X D 2

2 A ~ A ~ ~ o~ B ’ A

S (G (38,80 - ¥Oy (R) + = (vl (=53,8)
B B B

1
¥y V
+ Bl (=33,8) + 8 (=38,8)) (2.26)
B

is identical to Bq. (22) of Tobak and Schiff,'? derived

Equation (2.26)
constant flight speed. Analogous expressions for the

for the case of
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other moment coefficients én and ég, and for the force coefficients 6X,

éY’ GZ are obtained by substituting them wherever Cm appears in

Eq., (2.26).
Each term of Eq. (2.26) is associated with a particular motion from
which it may be evaluated. The first two terms are identified by compar-

ing them with those previocusly ottained for the case of pianar motion,

~

where Py = 0, B = const = 0. The first term is thus the pitching-moment
coefficient that would be measured in a steady planar motion with &, g

(and V) held fixed. The term (6mq +Yam.) is the planar damping-in-pitch
B a
coefficient that would be measured for small anguler oscillations in @

about fixed &, with £ held fixed at &8{t) and pp = 0. Similarly,

A

(Cp

, —Yam;) is the change in the pitching-moment coefficient due to

E B8
damping-in-yaw motion (small angular oscillations in B about fixed B,

with & held fixed, Py = 0). As was pointed out in Ref. 10, the term

-

(Cm —Yém;) and the anslogous term in @n(t), (& +Y@n;), are the cross-

BB ;!
coupling terms normally excluded in the classical treatment. These terms
are nissed by attempts to generalize to the nonlinear case from linear

formulations based on the principle of superposition.

The last term in Eg. (2.26) is identified by comparing it to the

result that would be cbtained for the case of steady coning motion

(a

~

const, B = const, ¢ = const), where, as seen from Eq. {2.12), Pp = Yo

I

-t

qB = §$, rB = o¢. When these conditions are substituted in Eq. (2.25)

the result is
~ »~ ~ '2 -~ A A -~ A A
€,(8) = & (=38,8) + & (g (038.8) + By, (=33,8) + 3, (=38,8))

(2.27)
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~

The group (ycmPB+§EﬁqB+&6mrB) is thusrseen t0 be the rate of change with
&, evaluated st i = 0, of thé pitching-moment coefficient measured in
steady coning motion, and 1s designated ﬁm.(m;&,ﬁ}.

In summary, Eq. (2.26) suggests that fgr the free flight of a general
body with small plunging and near-constant flight speed, the total moment
may be compounded of the contributions from four characteristic motions:
steady angle of attack and sideslip, planar pitch and yaw cscillaticns at
constant angles of sttack and sideslip, and coning at steady angle of
attack and sideslip. These motions sre illustrated schematically in
Fig. 5.

2.3.2 Aerodynamic Axes

As can be seen in section 2.1, the velocity vector of a general
metion can be gpecified in the aerodynamic axes by the scalar variables
&, ¢, V. The angular velocity vector is specified by Pgs 4, T OT,

equivalently, by i, g4, r, since is related to } and @ through

P
Eg. (2.4)., The pitching-moment coefficient in the aerodynamic axes,

Cm(t), thus may be specified as a functional of the form

c (%) = Fla(e),ole) ,v(g),a(e),ale),rle)] (2.28)

Proceedihg formally, one finds that the nonlinear formitstion in the aero-

dynamic axes corresponding to Fg. (2.25) is

¢ (+) = ¢ (w56(t),0(6),7(8)) + ”j;;ff i (738(),4(),7(2)
{(t)s (t)g
+ guv;—-Cmq(m;é(t),w(t),V(t)) + T, O, (=3 8(6),0(t),V(t))
# SR ¢ (sted,ut),ve) + HEE o (st), 0000, v(e))
R8 RO}
+ Eiz%&-Cmﬁ(a(t),w(t),V(t)) (2.29)
v
R
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As before, Eq. (2.29) may be simplified in the case of small plunging and
near-constant flight speed by rearranging terms and neglecting those termg
multiplied by q—&, r—gi, and V (which vanish identicslly for zero plunging

and constant flight speed, e.g., Eg. (2.10)) to obtain

55,
¢ (t) = C (=36,9) + Ev-(cmq(m;a,m) + YOy, (8,0)) +

<{Ia<:

C, (&,9)
5 v

+ %——é-(ycmi(m;a,w) * 80, (=35,9)) (2.30)

Analogous expressions hold for theg other force and moment coefficients.
\\
The characteristic motions from which the terms of Eg. (2.30) are evaluated

differ from those in the body-fixed axes.- Here the term (Cmq+yCm ) is the

8
planar damping-in-pitch coefficient that would be measured in a nonplung-

ing motion for small oscillations of the resultant angle of attack o
about fixed o with ¢ and V held fixed, » = 0. This term is designated

Cp,{8,¥). The term ¢, is the change in the pitching-moment coefficient

5 i

due to damping-in-roll motion (small oscillations in ¢ about fixed ]

with o = const, V = const, A= 0). When the conditions of steady coning

motion (g = 0, r = 5@, i o= v$) are substituted in Eq. (2,29), it can be

shown that the term (acmr+ycm.) is the rate of change with coning rate
A

¢, evaluated at ¢ = 0, of the pitching-moment coefficient that would

be measured in coning motion, and this term is designated Cm.(w;é,w).

¢
Thus
Cr, (8,%) = Cp_(=38,4) + vCy (8,9) (2.31a)
g e 5
Cp, (=38,1) = ¥y, (=38,¥) + 6Ci, (=38 ,9) (2.31p)
[} A

In the aerodynamic axis system, the characteristic motions are: steady

resultant angle of attack and bank angle 1, pitch and roll oscillations



at steady angles of attack and bank, and coning at steaﬁy resultant angle
of attack with fixed bank angle. These motions are illustrated
schematically in Fig. 6.
2.3.3 Correspondence Between Axis Systems

The formulation developed in the body-fixed axis system, Eq. (2.25),
is relsted to the one deveioped in the serodynamic axes, Eq. (2.29},
through Eq. (2.9). These relations, presented in detail for convenient
reference in appendix A, can be used to show the following sigrificant

equivalence:

Cp. (m38,9) = vCp, (8,9 + 8Cp (8,9) = 6{(Cn_ (=33,B) + &y, (3,8))
¢ Y g 98 o

+(Ca, (=38,8) = v0q, (3,802
B 8
(2.32)

The term C,, 1is the rate of change with $2/V, evaluated at ¢ = 0, of
b

the side-~moment coefficient Cn that would be measured in steady coning
motion, while the term C,  is the change in the side-moment coefficient

Y

due to damping-in-roll motion. Thus a determination of Cp -vC,  would
be equivalent to a determination of the three planar damping coeﬁficients.
The identity is shown schematically in Fig. 7. There are two cases of
gpecial interest that lead toc simplification of Eq. (2.32}: when y =0
(6=68, 8=20), and vhen ¢ =7/2 (& =20, 8 =6). In the first case,

Eg. (2.32) becomes

Cp. (=36,0) = vCp (8,0) = {8y (»33,0) - By, (8,0)} (2.33a)
¢ b B B

while, in the second case, we obtain

. (w36,m/2) = yCy (8,m/2) = 818, (»30,8) + vy, (0,80 (2.33b)
¢ b 98

Qe
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A determination of (Cn_—ycn.) as the resultant angle of attack becomes
small (8 + 0) for thesz casis ig seen to be equivalent to a determination
of the classical (linear formulation) damping-in-yaw and damping-in-pitch
coefficients, respectively.,

Another important equivalence between terms of the formulations in

the two-axis systems is

Cm_{G,w) = {Cy (m;&,§)+Y6m,(&,é)}c052¢+{6nr (M;&,é)—yanx(a,é)}sinzw
g dp a B B

~[{C, (msa,ﬁ)w@m(&,%)}ﬂ%r (m;&,é)-\fam,\(aaé)}]sin p cos Y
o

4g B
(2.3L)

™

which in the special cases of ¢ = 0 and v /2 becomes, respectively,

C. (8,0) = {Cp (=38,0) + yCp, (8,0)3 (2.35a)
o dp a

Oy, (8,1/2) = {En_ (=30,8) - v&,,(0,8)} (2.350)
a B 8

Here, in contrast to Eq. (2.33), the determination of Cp  as the angle
o
cf attack becomes small is eguivalent to the determination of the linear

formulation damping-in-pitech and damping-in-yaw coefficients, respectively.
2.3.4 Bodies of Revolution

When the body has axial symmetry about the Xp axis, the value of

¥ is arbitrary and will be chosen equal to =/2 for convenience. Also,
in the case of a body of revolution, the damping-in-roll motion used to

evaluate Cp, and Cyn, can be replaced by the classical Mapnus experiment

14 v

where the body is placed at angle of attack and spun about the Xp axis

- -

(o = const, ¢ = const, A = 0). EHere the term Ch. 1s the rate of change
. . v
with &/V, evaluated at ¢ = 0, of the side-moment ccefficient that

would be messured in the Magnus experiment., The only mechanisms for

affecting the moments on the body in this experiment is the small
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asymetry of the flow field produced by viscous shear at the body surface.
Thus numerous experimental investigations (e.z., Regen and Horanoff,l“
Platou and Sternberg,15 Platoul®) and a viscous theory (Sedneyl7) have
shown that, when measured in this manner, the term C,  and the corre-

U

sponding side force term, Cy,, for a body of revolution are extremely

v
small, Additionally, Schiff and Tobsk® have demonstrated experimentally

that, at least for a 10° half-angle cone, the term C,, can be neglected

v
in comparison with Cp, , the change in the side moment due to steady con-
¢
ing motion. In this case the determination of €, ~ alone, for small

¢

resultant angle of attack, is seen from Eq. (2.33b) to be eguivalent to
the determination of the linear damping-in-pitch coefficient.

The form that the nonlinesr formulation takes when applied to the
nonplunging flight of a bedy of revolution illustrates an errconecus assump-
tion that has frequently been made when attempting to generalize to the
nonlinear case from linear formulations based on the principle of super-
position, Here the terms Cp, , Cy,, Cy , and the static side-moment term
‘Cn(M;S,w) which appear in Eq.¢(2}33) ang in the analogous expression for
Cn(t) can normally be neglected on the basis of symmelry arguments. With
) chosen as 7/2, the resulting formulation can, with the aid of Egs.

{(2.10¢) and {2.11lc), be written as

52

Cm(t) = cm(m;s,w/e) * Cm&(é,w/2) {2.368)
c (t) = LI (38,0) Cp (8,0)} + Bl?-pic (8,m/2) (2.36b)
n T n$ 30,V = ¥ ni S v n¢ 5T .

Although, as discussed above, G, could be neglected in comparison with
b
C,. in the first term of Eg. (2.36b), we shall retain it in the notation

$
to avoid confusion. When Egs. (2.33b) and (2.35b) are substituted in

Eq. (2.36), we obtain
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= o0& é.%. A [=-1] 3 — 0 B
Cult) = C (=38,m/2) + = {Can( 30,8) ycné(o,e)} (2.37a)
SRIG ) 4 i, (0,80 + gy )
c,(t) = = a{cqu(w;o,e) * 0y, (0,B)} + -vr-cni §,m/2) {2,370
&4

When the linear formulation is valid (i.e., as a = 0, f » 0), the axial

symmetry of the body dictates that

{amq (=30,8+0) + y8,(0,8+0)} = {&,  (=30,840) - v@n§<o,é>o>}

B & Ty
(2.38)
This leads to the linear formulation result that
Ty Yoy
Cp. = 5 = Cm, (=) + yCp. (2.39)
a B o

where ﬁmq (=) + Yam- denotes the planar pitch-damping coefficient evalu-~
B

ated at a = 0, é = g. As the resultant angle of attack becomes large,
relation (2.38) is no longer valid. The damping measured for pitch oscil-
lations at large sideslip angle {and & = 0) is not necessarily equal o
the damping measured for yaw oscillations at the same angle of gideslip.

Thus, for large 6, Cn, need not be egual to {Cn_ - YCn_)/G and, in fact

g ¢ L
neither need equal the linear formulation value of the pitch-damping coef-

ficient. That this inequality does actually occur is demonstrated in Fig.

8, which compares the values of 8Cp, measured by Iyengar® for a 10°
half-angle cone at Mach number = 2 tg the values of C,, measured in
steady coning motion at the same conditions, where C << Gy, {Ref. 5).
Also shown is the theoretical value of G{quB(m) + yémé} (Toiak and
Wehrendl®), At the low values of ¢ the three values are in good agree-

e

ment. llowever, as & increases the equality bresks down. Consequently,

extensions to the linear formulation that retain the equality between Cp

a

and the term,(Cn_ - YCn_)/d, although they allow for the nonlinear

¢ k4
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behavicr of C,. with increasing angle of attack, will lead to false

a
results. TIn particular, when (qu - nd')/G is incorrectly forced to
b v
equal C. » the difference between the assigned value and the actual one

o
must be absorbed in the remaining term of the side-moment eguation,

{pBR/V}Cn.. As discussed by Levy and Tobak,? this may cause methods that
extract nﬁnlinéar aerodynamic coefficients from free-flight data, 1T based
on such an aefodynamic formulstion, to assign an unrealistically large
value to ’pn.; although the value determined in the classical Magnus

\ - ‘
exé&riment‘wiuld ﬁs negligibly small.
2.335 Potential Aﬁplicaiion to Airplane Spins

| :

The ability ta predict the pre-stall and post-stall spin behavior of
high perforﬁhnce aircraft is currently hampered by the inadequacles of the
linear aerod&namic moment system. The striking similarity between coning
motion and tﬁe steady spin of an aircraft suggests thal a moment formula-
tion similar to Eq. (2.25) (or, alternately, Eq. (2.29)) will properly
describe the aerodynamic reactions on a spinning airplane. It is known,
however, that in the establishment of a spin the large asymmetric regions
of separated flow on the wings of the vehicle cause the aserodynamic reac-
tions to be highly nonlinear functions of the spin rate, even at low spin
rates. This contradicts the assumption, used in the development of Eq,
{2.25), that the reactions are linear functions of the rates. It is
anticipated that by expanding the integral form for am(t} corresponding
to Eq. (2.17) about the point Py = pB(t) (the instantaneous spin rate)
rather than about pg = 0, a formulation corresponding to Eq. (2.25) could
be obtained which would deseribe the nonlinear behavior of the aerodynamic
reactions with coning rate as well as with angle of attack and sideslip.

In such a formulation pB(t} would, of necessity, be retained in the

notation.
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3. NUMERICAL FLOW-FIELD SOLUTION

The previous chapter has shown that the nonlinear aeroiynamic force
and moment acting on a body performing large-amplitude nonplanar moticns
can be compounded of the contributions from four characteristic motiocns:
steady angle of attack, pitch oscillations, either roll or yaw cscilla-
tions, and coning motion. It would be desirable to be able to apply
methods of computational fluid dynamics to compute the flow fields about
bedies performing these characteristic motions and so obtain their cone
tributions to the aerodynamic reactions, Extensive gtudy of the steady
angle-of-attack case has led to the development of many numerical finite-
difference methods for computing the steady inviscid flow field about two-
and three-dimensional bodies for subsonic through hypersonic Mach numbers,
The computation of the nonsteady flow fields generated by the oscillatory
motions is more difficult. Iere the flow varisbles are functions of tiume
as well as of position, and thus the sclution requires increased computsa-
tion and larger computer data storage capacity than is necessary for the
steady flow case. Coning motion, shown to have specisl significance in
the nonlinear moment formulation, generates a Tlow field more amenable to
numerical solution than do those of the oscillatory cases, since to an
cbserver fixed on the coning body the surrounding flow is steady. Hence,
techniques developed for the solution of steady flow fields can be applied
to coning motion.

The study of steady supersonic flow has led to the development of a
class of accurate numerical finite-difference methods termed marching
methods. By taking advantage of the fact that the equations governing a
supersonic flow are hyperbolic in the streamwise direction, the use of

such methods advances an initial solution, specified at one transverse
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plane, in the streamwise direction to obtain the entire flow field, These
methods enable the =zclution of the full nonlinear gasdynamic eguations,
rather than the simplified equations obtained by the introduction of s
velocity potential. The solutions obtained are therefore valid‘for flows
at hypersonic Mach numbers where vorticity is generated by strong curved
shock waves, as well as for flow at lower supersonic Mach numbers., One
such method, the noncentered second~order scheme introduced by MacCormack!!
and developed by Kutler =nd Lomax!? as a shock-capturing technique, has
been shown to be both asccurate and versatile. Results of computations of
the complex steady hypersonic flow field surrounding a proposed space
shuttle orbiter, obtained using this technique, show excellent agreement
with experiment and with results obtained from a three-dimensional method
of characteristics (Rakich and Kutlerlgj. In a shock-capturing technigue,
the eguations are expressed in conservation-law form and the finite-
difference scheme is applied uniformly at =11 points of a compubational
mesh which extends into the undisturbed free stream ahead of the bow shock
wave, The Jump in the flow variables across the shock is spread over
several points of the mesh. In a sharp-shock technique, the bow shock is
treated as a discontinuity and the Rankine-Hugoniot relationg are usged to
determine the flow conditions immediately behind the shock. One advantage
of the shock-capturing technique is its ability to determine the position
and strength of the bow shock without special computer coding. A second
and more important advantage is its ability to determine the position and
strength of embedded shock wavesz, such as the crossflow shocks that are
seen on the leeward side of a body at large angles of attack, if they
occur within the flow field. Because of its accuracy and simplicity, the
shock-capturing technique was extended to the case of a body in coning

motion in a supersonic stream.
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3.1 Method of Sclution
The nonlinear Eulerian gasdynamic equations are solved numerically
to determine the totally supersonie inviseid flow field abouit a pointed
body in coning metion. A body-fixed cylindrical coordinate system, desig-
nated the computational system, is introcduced. The origin of these coordi-
nates lies at the center of gravity of the body, with s, the axial coordi-

nate, aligned with the negative x_, axis. The radial coordinate 1 lies

B

in planes normal to the x, axis {i.e., in crossflow planes) as illustrated

B
in Fig. 1{a). 'The circumferential angle, &, is seen to be measured from
the resultant angle-ofw-attack plane. In coning motion at fixed coning rate
&, the flow is time-invariant with respect to an observer fixed in the com-
putational coordinate system. Since the flow field is everywhere super-
sonic, the gasdynamic equations are hyperbolic in the axial direction. A
computational mesh is established between the body surface and the free
stream shead of the bow shock wave in planes normal to the = axis, With

the flow field specified at an initial data plane, 5 = MacCormack's

®initial?
method is used toc march the solution in the = direction over the length
of the body. At the outer edge of the mesh, the flow variables are assigned
free=strean values, while at the inner edge, the flow is kept tangent to
the body. With the complete flow field thus determined, the forces and
moments are obtained from a subseguent integraticn of the surface pressure
distribution.

Computations have heen carried out for conieal bodies of circular and
elliptical cross section., An approximate initial solution was generated
at the initial data plane by assuming the flow upstresm to be that about a
cone at angle of attack and yaw, with a uniform sidewash velocity. Note

that although the body geometry is conical, the free-stream sidewash

generated by coning motion is a function of axial position along the body,
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and the resulting flow field is not conical. Details of the method and a
discussion of the approximate sterting solution are given below.

The computations were carried out on an IBM 360/67 computer linked to
a cathode-ray tube graphics device. The graphics unit, which possesses
man-machine interaction capability, was used to study the flow field as it
developed, and to control any numerical instabilities that evolved.
Approximately 50 minutes of computer time were required per case {one

anglie of attack at one coning rate).

3.2 Gasdynamic Eguations
The equations governing the unsteady inviscid flow of a non-heat—
conducting perfect gas around a body performing an arbitrary motion, writ-
ten with respect to a body-fixed coordinate system whose crigin is at the

center of gravity of the body, can be expressed as

{mass) g% (o) + aiv(pV) = 0 (3.1a)
(momentum)
e - G LT e T
e (o)} + grad p + o7 « grad T + ¥ @iv(p?) + p[ggzxv * = (ch)
A ey o= = e
+ g @V o+ szx(szxr)] =0  (3.1v)
(energy)
2 (& ; N BxT + =2 (% 2 (5% --].--
o (8 o))+ [0« 27 )+ L @+ @] - o7 = 0
(3.1e)
(state) p = (y-1)pe (3.14)
where
r position vector Iin the body coordinate systenm
7(7,t) velocity vector (having components wu, v, w) of the fluid st the

point T, measured relative to the body-fixed coordinates
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<

be]

cq velocity and angular velociiy, respectively, of the
body~fixed coordinates measured with respect to

an inertial system

g = plet(1/2)7]2) total energy per unit velume of fluid

The terms 200xV and piix(fx?) in Egs. (3.1b) and (3.1lc) are Coriolis and
centrifugal force terms that appear because the body-fixed coordinate sys-
tem is noninertial.

In the case of steady coning motion, vcg = const, & = const, and the
flow field is time-invariant in the body-fixed coordinates, Under these
conditions, Egs. (3.1) become
{maga) div(p¥) = 0 {3.2a)
(momentum)

arad p + oV - grad ¥ + ¥ aiv(pV) + p[20x¥ + Qx(Gxr)] = 0 (3.2b)

(@nergy)
aivl (p+r&F] + [28xT + Gx(8xT)] - p¥ = © (3.2¢)

Fquation (3.2¢c) can be simplified upon recognizing that (9xV) « ¥ =

T« (¥xV) = 0. Also it can be shown that with & = const,

curl[fx(fxr)] = 0, and thus &x(fxT) can be expressed as the gradient of
a potential, i.e., Ox{{ixr) = grad{~¢/2). Substituting in Eq. (3.2¢c}, and

using Egs. (3.2a) and (3.1d), we obtain

|+
[=3
+

rol-

o7 - graafie - 712 = o (3.3

-

. 1 1
This states that («(e -5 D+ 5 IVIZ) is constant along streamlines of the
flow field. Since the motion under consideration is that of a body through
& uniform stmosphere at rest with respect to the inertisl system, the con-

stant is the sasme for all streamlines, and Eq. {3.3) becomes
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Te - & Lw)2 - - Te =
Ye -5 ¢+ 3 (V|2 = const = ye = h_ (3.h4a)
or
P = I%% o[EhO + 0 = (uZ+vi+w2)] (3.Lb)

The number of dependent variables is thus reduced from five (E, D 7) to
four (p, V), with p related to p and ¥V through Eq. (3.h4b).

When the coordinate system is specialized to the-body—fixed computa-
tional system, the gasdynamic equations (3.2a) and (3.2b) can be written
in conservation-law form as

E' + F' + G! + H' = 0 (3.5)
s T ©

where the subscripts dencte differentiation and

pu pv pw
2
+oul puv 1l {puw
B = Pufr s P ez s G' = =
% prev pvwW
puw ovw _ p+pW:2
pv

2 2
ouv + pr[2(wyw=wyv)+wiwy T=s {w5+ws}]
B =

~ b

2 2
p(VZ_Wz) + p-[[2(w3u—mlw)+w1w28—f(wl""wg)}

2ovw + pt[2{wyvewou)+wy(wor+wys)]

The components of the angular velocity wvector of magnitude &, resolved
in the s,1,8 directions are, respectively, w; = -é cos o,
wy = & sin g cos G, and w3y = -& sin ¢ sin &, The energy equation is given

by Eq. (3.4b), while the centrifugal force potential, obtained from the

integration of grad(-%/2) = 0x(ix¥), can be expressed as
¢ = $2[(s sin o + t.co8 0 cos 6)2 + (1 sin 6)?]

For supersonic flow, Eq. (3.5) is hyperbolic with respect to g, and
thus can be integrated in the s direction. Specifically, u, the compo-

nent of the local flow velocity in the s direction, must be grester than
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the local speed of souad at all points of the flow field. In regions
where this condition does not hold, such as in the subsonic nose region of
a blunted body, the marching method fails. TIn such & case the nonsteady
form of the gasdynamic equations would have to be integrated with respect
to time, and the steady solution would be obtained as the steady limit of
an unsteady flow.

It is generally advantageous, when flow problems are solved with the
use of finite-difference methods, to have the physical boundaries of the
flow field lie along coordinate surfaces of the computaticnal coordinate
system., Under these conditions the application of the surface boundary
conditions is greatly sgimplified., Further, fto improve the accuracy of the
solution, it is desirable to use a dense spacing of computational grid
points in those regions of the flow field where large gradients of the flow
variables are known or suspected to exist, Thus, in the presgsent case, that
of flow over cones of circular and elliptical cross section, the annular
region of interest about the body (in the 1.8 plane) is transformed into
a rectangular region (Fig. 9). A radial independent coordinate u is
chosen to map the region between the body surface and an outer boundary
inte the region O £ p £ 1. The outer boundary is chosen to lie in the
undisturbed stream outside the bow shock wave. It is known that when a
cone of elliptical cross section is placed at incidence in a wing-like
attitude (i.e., with the semimajor axis of the ellipse normal to the flow
direction) rapid variations of the flow variables occur in the vicinity
of the semimajor axis. A circumferential independent variable n, depen-
dent on the body crogs section, is therefore chosen to cluster the physi-
cal circumferentisl planes more closely in these regions. The

transformations are:
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578 % Bipnitial = % % %final (3.62)
“=(“¢Q/“mf%); Dzpsl (3.6b)
n = tan_l(% tan 8] 3 0 <n z 2n (3.6c)

where

L Tb(B,s) value of <t at the body surface

Ty = tob(e,s) value of 71 at the ocuter boundary

A sine of the angle subtended by the semimajor axis, a(s),
of the elliptical cone

B sine of the angle subtended by the semiminor axis, b(s),

of the elliptical cone

Applying these transformations to Eq. (3.5) gives

E +F +0G +H=0 (3.7}
s ! n
where
E = E!
1
ob b 0

]
i

A B 2 2 )
+
gin n cos n (—-E- - _..S_'Eu + A% cos‘n ABB gin“n o

B, A Tobg™ b 2_32  Tobg~Th
H‘+l}:os?n(‘“’s§——f{)+"“‘§“—§-E'+ sinEnA-B + J o Gt

Tob—Tb AB Tob-'rb

b
il

Here BS denctes differentiation of B with respect to s, Tabg denotes

differentiation of b with respect to 8, ete.

.

3.3 Differencing Scheme
The rectangular region of interest in the p,n plane is divided into

an eguizpaced rectangular grid having 20 intervals Ay in the y  dirsction
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and 36 intervals An in the n direction. Thus Ay = 0.05, and

An = n/18. With the primitive flow variables (pressure, density, and
veloeity) known at &ll mesh points of an initiel data plane at s =n 4s,
MacCormack's two-step, predictor-corrector difference scheme is used to

advance the solution to s = {n+l)as, As applied to Eg. (3.7), this method

is
=~11+1 7 Agf.n n As sl n n
B o=E, - =—={F O - =\g, - G, )-——f_\sH. (3.8a)
Jk 3.k Au(dﬂ,k J,k) an (3,k+1 1.k Jak
1+l 1\n ~n+1 As f =ntl =n+1 As [ =n+1 =n+1 ~“n+l
R = {8, + B - — 1 F, - F, -— -G - AsH,
I,k 21 3.k J.k Au( 3.k J—l,k) An ( 3k J,k-—l) J,k}
(3.80)
where ﬁg K = E(n As,j Au,k An), the predicted value of E at s = n As,
2
) = E(n As,} Ap,k 4An), the corrected value of E at s = n As,
J.k
n n ~11 ~n .
F, =F(E, ), F,. =FE,, ), ebtc. To proceed, the conservation-law
3.k hPY Jk Jok
variables E? k® F? %o etec., are formed from the primitive variables at
L] E

all points of the mesh aince the body and outer boundary geometry are

~n+l
known. Predicted values E? K of the conservation-lsw variables at
3

s = (n+1)As are obtained with the use of Eg. (3.8a), and these are decoded
to obtain the predicted values of the primitive flow variables. Boundary
conditions are then applied to ensure tangency of the flow at the body,
and the proper flow conditions in the free stream. The conservation-law
variables ﬁn+1, ﬁn+1, end ﬁn+1 are formed from the predicted primitive

J.k7 I,k J.k
variables and the known body and outer boundary geometry at the new axial
position. Corrected values E§+; are obtained using Lg. (3.8b), and are

’

decoded to obtain the solution in terms of primitive variables at

s = (n+l)As. The boundary conditions are again applied, thus completing

the computational cycle. This cyecle is repeated to advance the solution
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from s = (n+l)As to s = (n+2)4s, and so on over the entire length of
the body.

The primitive flow variables are obtained from the new {predicted or
corrected) valués of E and the energy eguation (3.4:)} in the following

manner. Let

pu e (3.9a)
B = prpu? _ lez (3.9b)
puv ey (3.9¢)
puw ey (3.94)

With pressure eliminated from Eg. (3.9) by the use of Eg. (3.4b), the

simulteneous solution of Eq. (3.9) gives
v = ezfe; (3.10a)
w = eyfe; (3.10b)
= 2 1/2
R A SN I AT R e 4 SR . )

s el | Eors e ey (EhO + % - v w?) {3.10¢}
p = ei1/u (3.104)

The pressure p is determined from the energy equation (3.4)., The posi-
tive sign appearing before the radical in Eg, {3.10c) is used because the
axial component of the local flow velocity is supersonic throughout the
flow field. That the flow was supersonic in the cases considered was
assured since the maximum effective deflection angle, defined as the sum
of the resultant angle of attack and the cone half-angle, was always less
than the shock detachment angle for axisymmetric superscnic cone flow at
the game Mach number.

It is desirable, boeth for reasons of numerical accuracy end for com-
putational effidiency, to take as large a step size As as possible.
However, explicit numerical schemes such as this one become unstable if

too large a step is employed., To determine the maximum step size that may
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be used at a particular s station, the nonlinear eguation (3.7} is

expressed in a locally linear form as
E +ME + NE_+ H=0 (3.11)
8 % n

where M and N are the Jaccbian matrices OF/3E and 3G/5E, respectively.
The maximum allowable step sizes determined from applying linear one-
dimensional stability analyses successively in the yu,s and n,s planes
(e,g?, Richtmyer and Morton2®) are

As 1

T {3.12a)
Au OM max
As 1

= < o (3.12b)
An UN max

where Iyt and Oy are the eigenvalues of M and N. The elgenvalues are
evaluated for all points in the flow field at the current s loecation,
and the most restrictive condition on As 1is selected. While the use of
uncoupled one-dimensional analyses is not exact, the resulis are useful
provided the step size thus determined is further reduced by approximately
10 percent. Further, 1f the lcoeal Mach number tends toward unity, the

step zize determined in this manner tends toward zero, thus providing a

warning that the assumptions of the analysis may no longer be valid.

3.4 Boundary Conditions
The outer edge, uw = 1, of the computational grid is chosen to lie in
the undisturbed free stream shead of the bow shock. Here the pressure and-
density are the free-stream values,; while the wvelocity components, deter-

mined from geometrical considerations, are

U=V cos g - $Tob sin ¢ sin 6 (3.13a)
v = -V sin ¢ cos 6 + és sin o sin © (3.13b)
w=7V sin o sin 8 + ¢(s sin o cog 8 + T . cos o) (3.13c)

ob
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At the sides (n = 0 and n = 27) of the computational grid, = periodic con-
tinuation principle is applied, i.e., p{u,n = 0) = plu,n = 2n),

o{u,n = 0) = p(ﬁ,n = 271), etc. The tangency boundary condition at the
body, n = 0, ié due to a scheme of Abbett?! ana is briefly summarized here.
The flow variagles are known at the new axial position after the predictor
step. 1In geneﬁal, the local flow velocity at the body is not tangent ta
the body. A logal two-dimensional Prandtl-Mayer expansion or an isentropic
compression is’ﬁsed as needed to turn the flow into the local tangent plane.
This satisfies the tangency condition and determines a corrected valus of
the surface pressure. A corrected value of the surface density 1s then
determined since it is assumed that flow along surface streamlines is
isentropic. The magnitude of the corrected flow velocity is then deter-
mined from the energy equation, Eq. (3.4), while its direction is that
obtained from setisfying the tangency condition., This tangency conditian
scheme has been shown to give good results. The surface flow conditions
for a circular cone at angle of attack computed by Kutler et al.?? using
this scheme were found to be in good agreement with the numericsl results
of Babenko et al.2® and with the method of characteristics results of
Rekich.2"

Crossflow shocks were observed to exist in the flow field for the high
angle-of-attack computations and to extend to the body surface. In such
cages, the assumption that the flow 1s isentropic slong surface streamlines
is no longer valid. In prineciple, the value of surface entropy (used in
the tangency scheme to compute the corrected surface density) for points
behind the embedded shocks should be different from those points unaffected
by the shocks. However, if the embedded shocks are relatively weak this

refinement to the tangency condition can be justifiably neglected. This
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was found to be the case In the present computations, and a single value

of surface entropy was used for all points on the surface,

3.5 Initial Solution
The flow field surrounding even a conical body is not conical when
the body is in coning motion since the sidewash velocity of the undisturbed
stream, measured by an observer on the body, is a function of axial position.
This is illustrated in Fig. 10(a) for the conical tip of a body in coning
moticn., The velocity component normal to the angle-of-zttack plane varies

te ¢s, gin o at s = &

linearly from ¢stip sin o0 at s = Stip initial

initial?
changes direction at s = 0, and increageg linearly with s ‘behind the
mass center. The exact computation of the flow field upstream of the ini-
tial data plane at s = Sinitial would require the use of a three-
dimensional, time-dependarnt technique with the steady soclution approached
as the limit of an unsieady flow. To avold this complication, an approxi-
mate initial solution, valid for bodies with conical tips and capable of
being generated by the marching method, is employed. The flow field
upstream of the initial data plane for the conical tip in coning motion
(& = const) is assumed to be that of the body in steady planar motion at
the same values of angle of attack and bank, with a uniform imposed side-
wash velocity of ésinitial sin ¢ sacting normal to the angle-cf-attack
plane. This is illustrated in Fig. 10(b). Under these conditicns the
flew field arcund the conieal tip is conical.

The marching method is used to generate the approximate coniecal solu-
tion in a "distance asymptotic" technique. The outer boundary of the flow
field is chosen as a cone whose apex is coincident with that of the body.

Corresponding points in successive s = const planes thus lie aleong rays

of the flow field. The flow variables are set %o convenient values, such
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as free-stream values, ana the gasdynamic equations are integrated down-
stream, As the integration proceeds, the srbitrarily chosen initial
values of the flow variables have less and less effect on the current
values. The current sclution is inecreasingly affected only by the
boundary cconditions at the body surface and at the outer boundary. When,
at corresponding points, no change in the flow variables is detected with
further integration downstream, the flow variables are constant along rays
and the solution has been determined. The conical field is then scaled
to place it at s = Sinitial®
When the surface tangency condition is applied during the determina-
tion of the conical starting solution, the value of the surface entropy
is allowed to vary. At each step the position of the crossflow stagnation
streamline 1s determined numerically, and the surface entropy is chosen
as that of stagnation streamline one mesh interval above the body. As
the conical solution is approached, the surface entropy, too, remains
congtant with further integration downstream. The numerical method dif-
ferences across the vortical layer known to exist in the flow fields about
circular and noncircular cones at angle of attack (ef. Ferri?®), Although
differencing across these regions of high gradients causes some small
spatial oscillations of the flow variables close to the body, it has no
effect on the stability of the method.
The errors associated Witﬂ the use of the approximaete initial solu-

tion should be smail, particularly when s is chosen close to

initial

., and should diminish as the integration (for the body in coning

Stlp

motion) proceeds downstream from the initial data plane. Further, these
errors should have only negligible effect on the forces and moments since

the surface area of the body is small neer its apex. The magnitude of
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these errors was assessed by carrying out a series of computations at one
coning rate, Mach number, and angle of sttack, in which the position of
the initisl data plane was varied. MNo changes in the forces and moments
were observed as Sinitial was varied for values of

(s 1 (

initial ~ Stip Spingl " Stip) less than 0,05, The solutions were
thus started 5 percent dowmstream from the nose for the remainder of the

cases considered.

3.6 Results

Flow fields were computed for a 10° half-angle circular cone in con-
ing motion at M = 2 and M = 10, and for an elliptic cone in coning moticn
at M = 2. These cases were selected both to demonstrate various capsabil-
ities of the numerical method and to enable a comparison of the numerical
results with experimental measurements (and indirectly with the results of
other analytical and numerical methods).
3.6.1 10° Circular Cone at M = 2; Nonlinear vs. Viscous Effects

Computations were carried out for a 10° half-angle cone in coning
motion for angles of attack ranging from 0% to 25° (0 £ 8§ < 0.42) and for
values of the coning-rate parameter &Q/V ranging from O to 0.15. The
center of mass (s = 0) was located at 61 percent of the body length from

the nose; thus s_, = -0.61, s,

tip initisl = 0:56, and s

Final = 0.39. These
conditions duplicate those of the experiment described in Ref. 5. Briefly,
in that experiment a six-component balsnce mounted on a rotating sting was
used to measure the forces and moments acting on a cone in coning meotion.
In additicn, the viscosity-induced vortex patterns present on the leeward

side of the body at high angles of attack were investigated using the vapor

screen Tlow visualization technique (Allen and Perkins<®).
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3.6.1.1 IFow-Field Results

3.6.1.1a Surface pregsure - Circumferential plots of the surface

pressure for the conical initial solutions generated at s = Sipitial
-0.56 are presented in Fig. 11. These plots show the surface pressure,

normalized by the free-stream pressure, as a function of the circumferen-
tial angle 6 for each of the angles of attack o computed. These pres-

sure plots are not symmetrical sbout © = 0° due to the presence of the

imposed sidewash velocity, but rather are symmetrical about the directicn

/.

of the resultant crossflew velocity vector, i,e., tan esym = _msinitial
Results for two values of the coning rate $ are presented in the figure.
A value of &/V = 0,12 was used for o < 12.5°, and for o = 15°, &/Vl was
chosen as 0.15, giving values of esym of 3.84° and 4.80°, respectively.
At angles of attack less than the cone half-angle, the pressure drops
smoothly from a maximum st the windward ray {8 = esym) to a minimum at the
leeward ray (0 = esym + 180°), As the angle of attack is increased beyond
the cone half-angle, the surface pressure is observed to drop to a minimum
approximately 115° from the windward ray, and then to increase gradually
toward the leeward ray. At angles of attack of 20° and 25°, the surface
pressure drops te a minimum located 125°% and 135°, respectively, from the
windward ray. The pressure then undergoes an abrupt jump followed by a
slight increase as € increases toward the leeward ray, thus indicating
the presence of a pair of crossflow shocks extending from the body surface
into the flow field.

3.6.1,1b Crossflow shocks - The strength and location of the cross-
flow shocks can also be determined from the circumferentizl plots of the

surface crossflow Mach number of the conical initial solutions which are

presented in Fig. 12. The surface crossflow Mach number, Mc’ defined as
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the surface crossflow velacity, W normalized by the lecal speed of sound,
is shown as a function of 8 for angles of attack of 15°, 20°, and 25°.
These plots are symmetric about the windward ray, whose locstlion, indi-
cated by M = 0, is again seen to be disrlaced to esym = 4.8° due to the
imposed sidewash velocity. For angles of attack up to 15°, the erossflow
velocity is everywhere subsonic. At o = 15° the surface Mach number
reaches a maximum of 0.88 located 115° from the windward ray, whith corre-
sponds to the locaticn of the minimum surface pressure, and decreases
smoothly to zero at the leeward ray (6 = 185°), At o = 20° and 25°, the
crogsflow velocity is observed to become supersonic approximately 85° and
75%, respectively, from the windward ray, and reach a maximum Mach nurber
followed by an abrupt drop, indicating the crossflow shock, at values of
68 which correspond to the locations of the jump in the surface pressure.
In a conical flow field, the crossflow shocks lie along rays from the apex
and thus the component of the Mach number normal to these shocks at the
body surface is Jjust the surface crossflow Mach number, Mc. The best
estimates of the upstream (supersonic) surface Mach nuwbers, Mcl, and
shock locations, obtained from the numerical results for ¢ = 20° and 25°,
are indicated in Fig. 12. The corresponding downstresm Mach numbers, Mcz’
which together with the pressure ratio across the shock sre determined
from Mcl using the normal shock relations (e.g., Liepmann and Roshko?7)
are also shown. The pressure behind the crossflow shocks, determined from
numerically obtained values of the pressure ahead of the shocks and the
pressure ratio corresponding to Mcl’ is shown in Fig. 11 and is in good
agreement with the numerical results.

3.6.1.1c Flow-field contour mape - Qualitative characteristics of the

conical flow field, including the strength and location of the bow shock
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wave and the changes in the flow field due to increasing angle of attack,
can be determined from the flow-field cross-section contour maps presented
in Fig. 13, ?hese maps show contours of constant, equispaced values of
the pressure, normalized by the free-stream pressure, in the plane

Sinitial for each of the angles of attack computed. Also shown in
Fig. 13 are the body cross section and the selected outer boundary of the
computational region. The contours are gensrated by a contour mapping
program direq%ly from the numerical data. The contour mapping routine
generates fewer points along contcur segments running from the lower left
to the upper:right of the u,n computational mesh than for other segments.
This relatively large spacing between contour points causes the more jagged
appearance of. the contours in the lower right section of the maps. As
before, the fiqw field is observed to be symmetric about esym due to the
imposed sidewash velcecity, and the location of the symmetry plane is shown
in the figure,

At low angles of attack, the bow shock location, indicated by closely
spaced contour lines within the computational region, is well defined both
on the windward and leeward sides of the body. Asg the angle of attack is
increased beyond the cone half-angle, the windward sidé shock strength
increases. On the leeward side, the bow shock beeomes weak, ténding toward
a Mach wave, and its location is not easily identified. In these csses the
shock location is indicated by a contour of p/pm = 1.005. The small closed
contours seen in the free stresm cutside the bow shoeck at angles of sttack
of 20° and 25° are indicative of overshoots in the numerical data to values
of pfpm greater than 1,10, caused by third-order digpersive errors in the
numerical scheme. This is also the cause of the Jaggedness of the contours

in the shock leyer close to the shock. Experience with higher-crder



differencing schemes that minimize these effects (Kutler et alnzz), as
well as with sharp shock technigues, indicates that the osecillations have
negligibhle effect on the solution in regions away from the immediate
vicinity of the shock, Thus, for example, the surface pressure distribu-
tion is not adversely affected by the dispersive effects.

At angles of attack of 20° and 25°, shocks are seen to extend from
the body surface into the flow. The crossflow shocks are situsted at the
rear of a region of supersonic crossflow located adjacent to the body and
surrounded by a larger subsonic crossflow region. This is similar to the
mixed flow pattern that would be observed on a wing seetion in a transonic
flow (M_ < 1). As in the transonic case, the shock is strongest at the
body, and its strength decreases with distance from the body surface. The
c¢rossflow shock terminates in the flow field where it joins the sonic line
delineating the front of the supersonic region, The locations of the cross-
flow shocks and of the sonic lines, determined from the numerical data, are
indicated on the contour maps. At o = 20° the shocks extend sbout 1/2
body radius into the flow, while at ¢ = 25° they extend sbout 1 body
radiuse and, as discussed previously, are stronger.

3.6.1.1@ Surface pressure contours - Starting with the conical solu-
tions at s = Sinitial’ the gasdynamic equations were integrated over the
length of the body., The resuliing three-dimensicnal flow fields are
observed to vary only slightly and gradually with distance along the body.
To best demonstrate this variation, contours of constant values of the sur-
face pressure, nermalized by the free-stream pressure, are presented in
Fig. 14 for each angle of attack computed. The contours are plotted on
the developed body surface, which is unroliled at the leeward (6 = 180°)

ray. For zero coning rate (& = 0), the flow field surrounding the body
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would be conical, and the flow quantities, including the surface pressure,
would be constant along rays. In Fig. 14, the surface pressure contours
would merely be straight lines passing through the apex. Thus the devia-
tion of the pressure contours from such straight lines is a measure of the
effect of coning ot the flow field. Tor the small values of the coning-
rate paramete; $4/V used in the cases computed, the contours are only
slightly curvéd, and no large differences are observed betwean the low
angle—of—attaék and the high angle-of-attack cases. The contours that
criginate part way along the body indicate a gradual change in the pres-
sure with distance on the leeward side of the body. Although the curvalure
of the contours is smell, the cumulative effect of the curvature iz sig-
nificant. To obtaln a quantitative measure of the effects of coning, the
surface pressure distributions were iniegrated to obtain force- and
moment-coefficient data,

3.6.1.2 TForce and Moment Coefficients

3.6.1.2a Normal-force and pitching-moment coefficients - The normal-
force and pitching-moment coefficients are presented in Figs. 15(a) and
15(b), respectively. These coefficients were obtained from computstions
at fixed angles of attack for various conlng rates, At each anglé of
attack, no change in the normal-force or the pitching-moment coefficient
was observed as the coning-rate parameter was varied. This result, which
agreeg with the experimental observations, indicatesg that Cz.(w;é,m) and
Cm_(m;ﬁ,w), the contributions to the normal-force and pitching-moment
coszicients due to coning motion, are negligible.

Also shown in Figs. 15(a) and 15(b) are the experiﬁental measurements
(Schiff and Tobak®) of the normal-force and pitching-moment coefficients,

respectively. The theoretical values (Tobak and Wehrend!®) of the linear
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normal-force and pitching-moment coefficients, @Zﬁ(m) and émﬁ(m), are also
presented. At low values of &, the computaticnai results, ihe experimen-
tal measurements, and the linear theory values agree well. As ¢ increases
the computational results and the experimental measurements become nonlinear
functions of &, and both are greater than the linear theory values. How-
ever, the computational results and the experimental measurements remain

in good agreement.

3,6.1.2b Side-forece and gide-moment coefficients - At fixed angle of
attack, the computational results indicate that the side-force and side-
moment cceffieclients CY and Cn ara linear functions of the coning-rate
parameter over the range of $ investigated, This resuli, which agrees
with the experimental findings, demonstrates the adequacy of the moment
formulation, Eq. {2.30}, in which only terms linear in the rates are
retained,

Since CY and Cn are linesr functions of é, nermalizing by the
coning-rate parameter yields CY.(m;S,w) and Cn.(W;6,¢). Computational
results for Cy, and C,,  are presented in Figs. 16(a) and 16(b}, respec-
tively, togethei with tge experimentally measured values. Also shown in
Figs. 16(a) and 16(b) are the theoretical values (Tobak and Wehrend!8) of
the equivalent linear planar pitch damping derivatives, 5[6Zq (”)*YaZ;]
and 6[aqu(W)+yam:], respectively. These eguivalences follow from E;.

a

(2.39) since in an inviseid computation for a body of revolution, where

there is no viscous shear at the body surface, C is identically zero,

n

¥
At low values of &, Cy, and Cy_ ~ are linear functions of § and there is

¢ ¢
excellent agreement among the computational results, the experimental

measurements, and the linear theory values, As & increases, the computa-

tional results and the experimental meassurements become nonlinear functions
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of ¢ and depart significantly from the linear theory results. In con-
trast, the computational results agree well with the measurements for
values of & up to 0.3L, even as Cy pesks and then tends toward nega-
tive values., As & increases beyond 0,35, the computational results
diverge from those obtained experimentally.

3.6.1.2¢ Vﬂéor sereen results - Previous attempts to explain the
experimentally measured nonlinear behavior of the coefficients with
increasing angle of attack (Schiff and Tobak,5 Kuhn et al,28) postulated
that their deviation from the linear theory values was due to the forma-
tion of a viscosity-induced leeward-side vortex pattern. In contrast,
the present inviscid computational results, which neglect such = vortex
pattern, fellow the initial nonlinear behavior of the coefficients, This
suggests that the initial nonlinearities are caused primarily by inviscid
effects. An examination of the vapor screen studies of the experiment of
Ref., 5 tends to support the latter hypothesis. Photographs of the leeward-
gide vortex patterns as they appeared in the vapor screen are ppesented in
Fig. 17. The vortex cores are visible as dark spots on a light plane
normal to the wveloelity vector. Distinet vortices are not visible in the
vapor screen for values of & less than 0.34 (o < 15°), At 6§ = 0.3k
(o = 20°), vortices are visible but are small and lie close to the body
near the leeward ray. Under these conditions the invisecid flow field
should be a good approximation of the actual one, and the forces and
moments derived from the computation should, and do, agree well with the
experimentally measured values. With further increases in the angle of
attack, the vortices gradually increase in size, and presumsbly in
strength, and lie farther from the body. Here the inviscid flow field is

a poorer approximation of the actual one, and the computationally derived
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forces and moments begin tec diverge from those measured experimentally.
Nonetheless, where the viscosity-induced effects are small, the inviscid
computations agree well with experiment and demonstrate significantly non-
linear behavior of the forces and moments.
3,6.2 10° Circular Cone at M = 10

A computation was carried out for a 10° half-angle ccrne in coning
motion for an sangle of attack of 2° and a coning-rate parameter,‘&ﬂ/v, of
0.2. At this low angle of attack, good agreement is expected between the
side-moment coefficient C,, and the planar damping-in-pitch coefficient,
as predicted by Eq. (2.39).¢ Results of the computation are presented in
Table 1 and are compared with the corresponding planar coefficients obtained
from the unsteady inviscid flow-field results of Brong.?? The agreement
between the two methods is excellent with the maximum difference seen to be
less than 2 percent. This demonstrates the capability of the present
method to yield accurate results at hypersonic as well as at low supersonic
Mach numbers.
Table 1.- Comparison of Force and Moment Coefficients due to Cening with

Corresponding Planar Coefficients; 10° Half-Angle Cone, M = 10,0,
g = 2,0° ¢o/V = 0.2, zcg/z = D.61.

¢ . Cor. ..
Z m ) o 3
(SCZA(W)) (Gcm,\ (00)) (6 [CZ (m)"'YCZ.]) (5[@10 (m)+y i])
o o 4y & Gp o
Coning ~-0.06717  -0.00588 0.01623 -0.00626
(Planar)2® -0.0671 -0.00586 0.0164 -0.0063%
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3.6.3 Elliptic Cone at M = 2

Computations were carried out for a cone of elliptic cross section in
coning motion at M = 1.97. The ratioc of the major to minor axes of the
cone was 3:2, and the base area was equal to that of a 7.75° half-angle
circular cone of the same length. The angle of attack was fixed at L° for
Y = 0 and v/2, and the coning-rate parameter ranged from 0 to 0.15. Com-
putations were also carried out for the equivalent circular cone in coning
motion.

3.6.3.1 Normal-Force Coefficient

The normal-force coefficients obtained from the computations with the
bodies in coning motion are presented in Fig. 18(a). Agéin, at fixed angle
of attack no change in the normal-force coefficient was obtained as the
coning—ratelparameter was varied, Also shown in Fig. 18(a) are experimen=
tal values of the normal-force coefficients of these bodies measured at
zerc coning rate by Jorgenson.30 The good agreement between the computa~
tional results and the experimental measurements demonstrates the capabil-
ity of the method to compute the flow field about bodies of noncircular
crosg section. The method can be extended to beodies of arbitrary shape
(i.e., airplane-like configurations),.

3.6.3.2 Side-Moment Coefficient

Computed values of the side-moment coefficient C, (w38,¢) are pre=
sented in Fig. 18(b). Alsoc shown is the theoretical vaiue (Tobak and
Wehrend!®) of the linear planar damping-in-pitch derivative

£s

G[Cmq (w)+Y6m.] for the equivalent circular cone. A&s before, for the
B a
circular cone Cp = O and there is good agreement between the computed

value of Cn_ and the linear damping-in-pitch derivative, as predicted by

$
Eq. {2.39). For the elliptic cone, Cy_  does not vanish but can probably

L
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be neglected in comparison with C,.. Under these conditions, Hg. (2.33)
¢

indicates that Cp,(=38,7/2) = 8[& (=) + yCy.] and
¢ . g o
Cp, (=38,0) = 6[Can(m) - ndé]. These are the planar damping coefficients
¢
for oscillations in the directions indicated by the deouble-headed arrows
in Fig. 18(b). The computational results confirm the expectation that
oscillations parallel to the major axis of the elliptical cone should be

less strongly damped than those parallel to the minor axis.
L. CONCLUDING REMARKS

Concepts from the theory of functionals have been applied to develop
nonlinear formulations of the aerodynamic force snd moment systems acting
on bodies in arbitrary, slowly varying, large-smplitude motions. The anal-
ysis, which proceeds formally once the functional dependence of the aerc-
dynamic reactions upon the motion varisbles has been established, ensures
the inclusien of all pertinent aerodynamic terms within the resulting
formulations. The results confirm formally %the intuitive notion that the
instantanecus reacticns on 2 body in an arbitrary motion can be compounded
of the contributions from seversl characteristic motions: & steady motion
with the instantaneous large values of the motion variables held fixed,
and suitable perturbaticns about the steady motion.

The analysis indicates that coning, where the nose of the body
describes a circle around the velocity wvector, charascterizes the nonplanar
nature of a general motion. With this motivation, a numerical method was
developed for computing the inviseid flow field surrounding a body in con-
ing motion. Computations carried out for circular cones in cening motion
both at low supersonic and hypersonic Mach numbers confirm the adequacy of

a linear formulation at low angles of attack. At larger angles of attack,
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however, the forces and moments become nonlinear functions of the angle of
attack. Compétational'results for the reactlions on.the circular cone at
the higher angles of attack agreed well with experimental measurements
within the ra;ge of variables investigated. This indicates that the ini-
tial nonlinea% behavior of the serodynamic forces and moments is governed
primarily by %he inviscid flow and not, as previously postulated, by the

viscosity-induced leeward-side vortices.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, August 24, 1973
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APPENDIX A

The formulstion developed in the body-Ifixed axis system is

. n R pp? . nrey A
C () = C (=38(t),8(t),V(t)) + “ﬁ;‘CkpB(mia(t)’B(t)=V(t))
ag? . A a Tt . Arey
+ BA quB(m;a(t),B(t),V(t)) + A ckrB(m,a(ths(t),V(t))
88 (ale),B(6),7(6) + B & (a(6),B(6),7(2))
R & R 8
(A1)

while the formulation developed in the aerodynamic axis system is
Ok, (=38(8),u(t),v(t))

A

¢ (t) = € (=38(t),0(t),V(t)) + 7 O
* %i Oy (3 6060, 0(6), () + % O, (w36(8),0(t),7(2))
2o (5(6),0(6),0(8)) + & o (s(6),0(5),0(t))
R 3 RO)
+ i%»ckﬁ(a(t),w(t),v(t)) s k= g,m,n (a2)

VR
The moments expressed in the two axis systems are related to each other

(A3a}

through
¢, = &2
(A3Db)

¢ +ic = e (& + if)
m n m n
while the motion varisbles in the two axis systems are related by
{Abg}

Pgp = A+ ¥
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(Alb)

Ay + irB =
{(Abe)

Substituting the results of Eq. (A4) into Eq. (Al), we obtain

(=38(5),30),7(8)) + 2% & (w38(8),8(t),7(¢))

Ck(t) = ak 2o
r -
+ %&'akq (m;&(t),é(t),V(t))cos P - @kr (m§a(t),§(t),V(t))sin 0
RL *B B |
g . o .
+ 1?—% qu (mia(t),e(t),V(t))sin Y+ Ckr (m;u(t)ss(t),V(t))coS v
RL B B |
. %i 8. (8(£),B(4),7(¢) Jeos ¢ + Eké(&(t),é(t),v(t))sin %]
" i%l}akz(a(t)’B(t)’V(t))Sin b+ 6ké(a(t),é(t),V(t)Jcos ¥
[a ]
1 A . R Ve A A ]
' E'CkpB(”;“(t)’B(t’=V(t)ﬂ *';g'ckv(a(t),s(t),v(t)) . k= g,m,n
(45)

When the results of Eg. {AS) are substituted into Fq. (AS), the following

equivalences between coefficients formulated in the two-axis systems are

obtained:
¢, (=38,9,7) = G, (=3a,8,7) | (a6a)
Cp (=38,u,V) = égp (=30,8,V) (A6b)
A B
Ciq(mgﬁ,w,V) = 6gq (m;&,E,V)cos V- egr (miasésv)Sin v (Abe)
B B
Copl=38,0,V) = equ(m;&,é,V)sin b+ CQTB(m;&,E,V)cos v (a64)
Cy (8,0,V) = &y (8,8,V)cos v + €y, (4,8,V)sin ¢ (A6e)
5 a R
Cpr(a,8,V) (a61)

sz(6=¢,V) = Cnv
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Cp (8,0,V) = égp (238,B,V) + 6[-@21(&,§,V)sin U+ agé(a,E,V)cos vl

¥ B

and

Cp(238,4,V)

il

Cr, (=38 ,%,7)
A

cmq(miﬁswsv)

Cm,, (=38 ,,V)

Cp, (8,0,V)
&

Cmﬁ(69¢:v)

Cn, (8,9,V)
W

The corregpondences for the ccefficients in

Eq. (AT) by replacing

ogous matches for the force coefficients may be obtained by replacing

Q

am(m;a,é,V)Cos Y - Cn(m;aségv)sin i

cmpB(wQ&,égv)COS P - 6np (w;&,%,V)sin v

B
G, (=3a,B,V)cos ¢ + Cp_ (»3a,8,V)sin2y
g ;)
-[6m (w;agésv) + an (m;a,é,V)]COS 11) sin '¢J
B g
6mr (w;&,ﬁ,v)coszw - an (M;g,é,V)sinzw
B a5
+[am (030,8,V) = anr (m;a,é,V)]cos ¥ sin ¢
R B
G, (8,8,7)cos2y = 8, (5,8,V)sin2y
a R
+[Cn, (a,8,V) - C4,(a,8,V)Jeos ¢ sin ¢
B o

am?(Q,é,V)cos - anv(&,é,V)sin ¥

A

(m;"‘”"v) - é (W;A,A V) in
CmPB asB,V)cos o nPB a,B3,V)sin ¢

+6{am;(a,§,V)coszw + @nx(&=§=VJsin2w
B o

‘[ém (&,é,v) + & (&,E,V)]sin Y cos ¢}

. 1l
o

jeshll

~

n

g,m,n with X,Y,Z, respectively, in Eqs. (A6) and (AT).
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{ATa)

(A7)

(AT4)

(ATe)

(ATr)

(A7g)

C,(t) mey be obtained from

Cm with © and ﬁn with Hém. Similariy, the snal-
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(a) Crossflow plane.
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Figure l.- Axes, angles, and velocity components in the ecrossflow and
resultant angle-of-attack plane.
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(a) Planar motion.
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(b) Variation of motion variables.

Figure 2.- Arbitrary large-amplitude planar aireraft motion.
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Figure 5.~ Basic motions in body-fixed axes.
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Figure 10.- Approximation of initial sclution.
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Figure 1h,~ Surface pressure contours for 10° half-angle cone; Mach number = 2.0,
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Figure 15.- Normal-force and pitching-moment coefficients for 10° half-angle coné;
Mach number = 2.0, chlﬁ = 0.61,
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